M.A./ M.Sc. Statistics Programme Course objectives and outcomes | Course code | Course
Name | Course Objectives | Course Outcomes (CO) | |-------------|------------------------------|---|--| | STT 101 | REAL
ANALYSIS | The aim of the course is to introduce fundamental concept of real analysis such as sequence, series of real numbers and their convergence, continuity, differentiability of real valued functions. | CO1: Describe fundamental properties of the real numbers that lead to the formal development of real analysis. CO2: Comprehend rigorous arguments developing the theory underpinning real analysis. CO3: Demonstrate an understanding of limits and how they are used in sequences, series, differentiation and integration. Construct rigorous mathematical proofs of basic results in real analysis. CO4: Understand abstract ideas and rigorous methods in mathematical analysis to solve practical problems. | | STT 102 | LINEAR ALGEBRA | To learn the basic ideas of abstract algebra and techniques with proof in pure mathematics and further, it can be use in many other courses. | CO1: Use the basic concepts of vector and matrix algebra, including linear dependence / independence, basis and dimension of a subspace, rank and nullity, for analysis of matrices and systems of linear equations. CO2: Evaluate determinants and use them to discriminate between invertible and non-invertible matrices; Use the characteristic polynomial to compute the eigen values and eigenvectors of a square matrix and use them to diagonalizable matrices when this is possible. CO3: Discriminate between diagonalizable and non-diagonalisable matrices; orthogonally diagonalizable symmetric matrices and quadratic forms. CO4: Combine methods of matrix algebra to compose the change-of-basis matrix with respect to two bases of a vector space, identify linear transformations of finite dimensional vector spaces and compose their matrices in specific bases. | | STT 103 | DISTRI -
BUTION
THEORY | To present the general theory of statistical distributions as well as the standard distributions found in statistical practice. To train students with essential tools for statistical analyses at the post graduate level. Fostering understanding through real-world statistical applications. | CO1: Understand the most common discrete and continuous probability distributions and their real life applications. CO2: Compute marginal and conditional distributions from joint distributions. CO3: Get familiar with transformation of univariate and multivariate densities. Understanding of distribution helps to understand the nature of data and to perform appropriate analysis. CO4: Apply compound, Truncated, mixture and non-central probability distributions to solve problems. | | STT 104 | SAMPLING
METHODS | To learn scientific view to conduct the survey in proper way to collect the data about specific perspective. To Learn variety of probability and non-probability sampling methods for selecting a sample from a population. | CO1: Understand the basic principles underlying survey design and estimation. CO2: Apply the different sampling methods for designing and selecting a sample from a population. CO3: Implement Cluster sampling, Ratio and Regression estimation in real life problems. CO4: Apply unequal probability sampling designs viz. PPSWR, PPSWOR including Lahiriøs method and Murthyøs estimator for survey. | |---------|---|---|---| | STT 105 | STATISTIC
AL
COMPUTIN
G | To familiar and to develop learning mindsets to analyze statistical data through R software. To learn basic syntax, coding and vocabulary to aid in data analysis. | CO1: Get familiar with R software and learn basics of R with descriptive statistics. Access online resources for R and import new function packages into the R workspace. Import, review, manipulate and summarize data-sets in R. CO2: Compute probabilities and fitting of probability distribution with R environment. CO3: Explore small and large data-sets to create testable hypotheses and identify appropriate statistical tests. CO4: Perform correlation, regression analysis and appropriate statistical tests for real life situations using R. | | STT 106 | COMPUTER
GRAPHICS | To learn basic concepts used in computer graphics. To implement various algorithms to scan, convert the basic geometrical primitives, transformations, Area filling, clipping, fundamentals of animation, virtual reality and its related technologies. To understand a typical graphics pipeline and to design an application. | CO1: Understand input and output devices of computer. CO2: Understand how to scan convert the basic geometrical primitives, how to transform the shapes to fit them as per the picture definition. CO3: Visualize the colors in computer graphics. CO4: Comprehend and analyze the fundamentals of animation, virtual reality, underlying technologies, principles, and applications. | | STT 107 | STATISTICS
EDUCATION
AND
RESEARCH
METHODOL
OGY | To learn critical and creative thinking of model and its components of research. | CO1: Understand the basic of research and blooms taxonomy of learning levels. CO2: Find the topics from current research in statistics education. CO3: Apply statistical tools in design, research and development. CO4: Understand, implement and interpreted the general and specific research patterns. | | STP 01 | Practical-I | (based on STT 101 to 104) | CO1: Solve the real analysis problems. CO2: Apply linear algebra problems in real life situations. CO3: Fit the distributions to a real life data using R-software. CO4: Perform sampling methods analysis using R-software. | |---------|-----------------------------|---|--| | STT 201 | PROBABILI
TY
THEORY | To understand the uncertain occurrence situations with logical manner. | CO1: Recognize common probability distributions for discrete and continuous variables. CO2: Apply methods from algebra and calculus to derive the mean and variance for a range of probability distributions. CO3: Calculate probabilities relevant to multivariate distributions, including marginal and conditional probabilities and the covariance of two random variables. CO4: Understand the concept of convergence, common methods for evaluating an inequalities performance and properties of desirable estimators. Understand the central limit theorem and large-sample approximations for common statistics. | | STT 202 | REGRESSIO
N
ANALYSIS | To develop a deeper understanding of the linear and non-linear regression model and its limitations. To learn how to develop regression model and apply for the specific perspective data appropriate manner. | CO1: Apply simple linear regression model to real life examples. CO2: Understand multiple linear regression models with applications and concept of Multicollinearity and autocorrelation. CO3: Compute multiple and partial correlation and checking residual diagnostic to validate model. CO4: Apply Logistic and Non-linear regression models and its implementation in real life situation. | | STT 203 | PARAMETR
IC
INFERENCE | To derive suitable point estimators of the parameters of the distribution of a random variable and give a measure of their precision. To learn computational skills to implement various statistical inferential approaches. | CO1: Understand the notion of a parametric models, point and interval estimation of the parameters of those models. CO2: Obtain the sufficient statistic, minimal sufficient statistic, m.l.e., moment estimator of the parameter. CO3: Understand the concept of MVUE, MVBUE, UMVUE. CO4: Describe the concept of Bayesian inference and their real life applications. | | STT 204 | STOCHASTI
C
PROCESSES | To learn and to understand stochastic processes predictive approach. To develop an ability to analyze and apply some basic stochastic processes for solving real life situations. | CO1: Understand the stochastic processes, Markov chains, Transition probability matrix and various types of states. CO2: Explain Random walk, Gambler ruins problem and apply Poisson process in real life situations. CO3: Formulate and solve problems which involve setting up stochastic models. CO4: Understand renewal theory and branching processes with applications. | |---------|---|--|--| | STT 205 | CALCULUS | To compute and analyze limits, derivatives, and integrals functions. To recognize the appropriate tools of calculus to solve applied problems. | CO1: Understand the type of variable and useful in the development of the function. CO2: Verify the value of the limit of a function at a point using the definition of the limit. CO3: Understand the consequences of the Intermediate value theorem for continuous function. CO4: Know the chain rule and use it to find derivatives of composite functions and obtain expression for higher order derivatives of a function using the rule of differentiation. Solve integrals and evaluation of multiple integrals with numerical problems. | | STT 206 | DEMOGRAP
HY | To identify appropriate sources of data and to perform basic demographic analyses using various techniques across populations. To learn the main theories used to understand population studies and societal change. | CO1: Understand the interdisciplinary nature of demography, balancing equation, use of Whippless, Myers and UN indices. CO2: Understand the measures of mortality and fertility. CO3: Describe the concept of life tables. CO4: Apply Quasi, Lotkass stable population models. | | STT 207 | STATISTIC
AL
METHODS
IN
EPIDEMIOL
OGY AND
ECOLOGY | To learn different methods of carrying out and analysing, epidemiological studies. To study pertinent issues such as appropriate design, data quality, analysis, and interpretation and presentation of results in environmental studies. | CO1: Understand the basic epidemiology, parametric growth models and single species growth models. CO2: Understand effect of measurement errors on growth rate and related inference problems. CO3: Understand the concept of demographic and environmental stochasticity. CO4: Understand mathematical models of infectious diseases in stochastic environment. | | STT 208 | CATEGORI
CAL DATA
ANALYSIS | To study distributions for categorical data. To describe and make statistical inference for contingency tables. To learn different models for categorical data such as Generalized Linear, logit, logistic, log linear and matched pair models. | CO1: Visualize categorical data, compute measures of association and structural models for discrete data. CO2: Fit logistic models and Poisson models to data set. CO3: Check model assumptions and analyze residuals and goodness-of-fit, Conduct inference for model parameters. CO4: Understand path and structural equation modeling. | |---------|----------------------------------|---|---| | STP-02 | Practical-II | (based on STT 201 to 204) | CO1: Solve the problems related to distribution function. CO2: Apply regression analysis technique real life problems. CO3: Estimate the parameter of a distribution from sample. CO4: Obtain the TPM of real life problems and give conclusions. | | STT 301 | INDUSTRIA
L
STATISTICS | To develop scientific view to analyze the industrial data about specific perspective. To learn the statistical quality control techniques used in industries such as control charts, acceptance sampling plans etc. To learn some advanced control charts, capability indices and the concept of six-sigma. | CO1: Understand basic of production process monitoring and apply concept of control charts on it. CO2: Apply the acceptance and continuous sampling plans in production process. CO3: Compute capability indices. CO4: Know and apply the concept of weighted control charts, six sigma, ISO: 9000 series standards and Taguchi design. | | STT 302 | OPERATIO
NS
RESEARCH
I | To develop the optimization techniques that will be useful in the personal and professional life. To learn the mathematical formulation of complex decision-making problems and arrives at optimal or near-optimal solutions using different techniques of operations research. | CO1: Understand basics and formulation of linear programming problems and appreciate their limitations; solve linear programming problems using graphical method. CO2: Apply simplex method to solve real life problems. CO3: Solve artificial variable technique, duality theory, revised simplex method, sensitivity analysis, transportation and assignment problems. CO4: Understand the concept of Game theory, PERT/ CPM, simulation, investment analysis with real life applications. | | STT 303 | DESIGN OF
EXPERIME
NTS | To learn the basic principles in the design of simple experiments. To learn different tests for comparing pairs of treatment means, ANCOVA, factorial experiments, fractional factorial experiments, confounding, BIBD, PBIBD with solving real life examples. To learn the applications of different designs in agriculture. | CO1: Compare the pairs of treatment means using different methods when null hypothesis in rejected in ANOVA. CO2: Analyze the data using split plot, strip plot and general factorial experiments. CO3: Construct fractional factorial experiments and apply confounding in real life problems. CO4: Understand the analysis of BIBD, PBIBD, Quasi-Latin square, Youden square and cross over design and their applications in agriculture, business and industries. | |------------|---------------------------------|--|---| | STT 304 | TESTING
OF
HYPOTHES
ES | To learn the development of null and alternative hypotheses. To learn types of errors, non-parametric tests. To perform Test of Hypothesis as well as obtain MP, UMP tests. | CO1: Formulate null and alternative hypotheses and apply small, large sample and non-parametric tests in real life problems. CO2: Compute probabilities of types of error, MP tests and MLR property. CO3: Understand UMP and UMPU test with their applications. CO4: Obtain asymptotic confidence interval of a parameter and its relation with testing of hypothesis problem. | | STT 305 | TIME
SERIES
ANALYSIS | To learn and develop scientific view to understand the time series data and its analysis. To learn stationary and non-stationary, and seasonal and non-seasonal time series models. Learn to estimate model parameters and compare different models developed for the same dataset in terms of their estimation and prediction accuracy. | CO1: Understand the concept of time series with its components and able to compute ACVF and ACF. CO2: Remove trend and seasonality using different methods to convert the time series into stationary. CO3: Apply auto regressive, moving average, ARMA, ARIMA models, Box-Jenkins approach to forecast time-series data empirically. CO4: Check and validate models with its residual analysis and diagnostic checking. | | STT
306 | DECISION
THEORY | To learn various
decision rules theories
and its applications of | CO1: Understand decision problem, loss function, risk function and decision rules. CO2: Understand the concept of | | | | decision making as individuals, in groups, and in organizations. | admissibility and completeness. CO3: Implement nonparametric statistical tests. CO4: Apply two sample problems on real life examples. | |------------|---|---|---| | STT 307 | STATISTIC
AL
METHODS
IN
FINANCE | To learn and develop
an analytic approach to
deal with financial
data. | CO1: Understand the concept of returns, efficient market hypothesis and compounding. CO2: Understand the concept of one risky and two risky assets, portfolio theory. CO3: Apply the concept capital asset pricing model. CO4: Understand option pricing, Value at risk, the concept of re-sampling. | | STT 308 | MATHEMA
TICAL
BIOLOGY | To learn the theory of mathematical modeling and its applications in the analysis of biological systems including populations of molecules, cells and organisms. To develop skills in mathematical modeling. | co1: Understand linearization of dynamical systems with various dimensions. co2: Understand translation properties and various criterions. co3: Describe single and multi-species population growth models. co4: Apply the concept of deterministic and stochastic models on simple and general epidemics. | | STP 03 | Practical III | (Based on STT 301 to 304) | CO1: Draw controls charts and apply acceptance sampling plans in industry point of view. CO2: Apply operations research techniques to solve real life problems. CO3: Apply different designs in real life situations. CO4: Obtain MP and UMP test. | | STT 401 | ASYMPTOT
IC
INFERENCE | To develop generalization aspect of inferential theory. To get familiarise with the theories and methods of asymptotic inference. | CO1: Understand the concept of consistency and asymptotic normality. CO2: Understand method of moments and percentiles, maximum likelihood to find consistent estimator and Cramer Huzurbazar theorem. CO3: Apply likelihood ratio tests, Wald, Score and Bartlettøs test in real life situations. CO4: Compare various tests through relative asymptotic efficiency. | | STT
402 | OPERATIO
NS
RESEARCH- | To learn advanced
methods in operations
research course that | CO1: Solve real life problem using integer programming. CO2: Use dynamic programming in | | | II | are used in the systems approach to Engineering and Management, so as to provide them with the requisite tools for the mathematical representation of decision-making problems, in particular emphasizing the roles of uncertainty and risk. | multistage solution problem. CO3: Deal with inventories of various goods with and without shortages. CO4: Understand and deal with queuing theory, Non-linear (concave) real life optimization problems, Quadratic programming problems. | |---------|---|---|--| | STT 403 | MULTIVARI
ATE
ANALYSIS | To learn and develop scientific view to deal with multidimensional datasets and its uses in the analysis of research data. To understand the extensions of univariate techniques to multivariate frameworks and learn to apply dimension reduction techniques used in the data analysis. | CO1: Understand multivariate normal distribution and their real life applications. CO2: Understand Wishart distribution, Hotelling T² and Mahalanobis D² statistic. CO3: Implement dimension reduction techniques using software on real life problems. CO4: Demonstrate knowledge and understanding of the basic ideas behind discriminant and clustering analysis techniques with applications. | | STT 404 | RELIABILIT
Y AND
SURVIVAL
ANALYSIS | To learn the reliability theory and analysis of survival data. To distinguish censored and uncensored data. To visualize and communicate time-to-event data, to fit and interpret failure time model. | CO1: Understand the elements of reliability, hazard function and its applications. CO2: Understand the concept of censoring, life distributions and ageing classes. CO3: Estimate nonparametric survival function of the data. CO4: Explain test of exponentiality against nonparametric classes, two sample problems. | | STT 405 | DATA
MINING
TECHNIQU
ES | To understand the concept of data Mining for enterprise data management and as a cutting edge technology tool. To enable to identify data sources, processing and imparting knowledge tools to analyze sets of data to gain useful business understanding. | CO1: Organize and prepare the data needed for data mining using pre-processing techniques. CO2: Understand unsupervised learning techniques for univariate and multivariate data. CO3: Understand supervised learning techniques for moderate to high dimensional spaces. CO4: Apply classification methods to real life problems in various fields. | | STT 406 | DIRECTION
AL DATA
ANALYSIS | To learn understanding
of data analysis using
statistics computational
tools on problems of
applied nature. | CO1: Visualize the large data-set effectively. CO2: Understand circular models and concepts of some advanced distributions. CO3: Understand the methods of estimation. CO4: Apply nonparametric methods to real life problems. | |------------|---|--|--| | STT 407 | ACTUARIA
L
STATISTICS | To learn the life tables used in insurance products. To learn the concept of interest, different life insurance products, life annuities, net premiums. To motivate students to prepare for exams required for employment in the actuarial science profession. | CO1: Understand the utility theory, insurance products and life tables. CO2: Understand the concept of interest. CO3: Understand the concept of life insurance and the existing insurance products of different insurance company. CO4: Know life annuities, net premium and net premium reserves. | | STT 408 | STATISTIC
AL
TECHNIQU
ES IN
MICROARR
AY DATA
ANALYSIS | To learn and develop problem formulations that may be answered by microarray analysis. | CO1: Understand and setup for microarray experiments and quantification. CO2: Understand statistical inference procedures in comparative experiments for single channel microarray data. CO3: Formulate multiple hypotheses testing problems that can be addressed by microarray data analysis. CO4: Apply hierarchical cluster analysis in microarray data. | | STT 409 | CLINICAL
TRIALS | To learn and develop scientific view to study the statistical challenges of clinical comparison of two or more treatments in human subjects. To Aware of the use of the cross-over design and its limitations. | CO1: Understand need and ethics of clinical trials. CO2: Apply various designs of clinical trials to the data. CO3: Describe optimal cross-over designs experiment with a continuous normally distributed outcome. CO4: Understand designs based on clinical endpoints, drug interaction study. | | STM-
01 | Project | | CO1: Search primary or secondary dataset and collect the data for analysis. CO2: Apply the statistical techniques in the project which they had learned in the theory. CO3: Interpret and conclude the statistical analysis scientifically. CO4: Represent his/her work through power point presentation. | | STS 1 | DATA
ANALYSIS
WITH
ADVANCED
EXCEL | To learn analysis of
various kinds of data
using excel. | CO1: Handle and process the data using excel. CO2: Perform the analysis with analysis tool pack in excel. CO3: Customize menus and toolbars in excel. CO4: Understand and apply various functions available in excel. | |-------|---|---|---| | STS 2 | STATISTIC
AL
ANALYSIS
USING R | • To learn the statistical analysis using :Rø free and open source software. | CO1: Understand basics of R environment. CO2: Perform various operations on data in R. CO3: Do descriptive statistical analysis in R. CO4: Compute correlation and regression lines through R. | | STS 3 | INTRODUCTI
ON TO DATA
MINING | To learn basic data
mining techniques and
their handling using R
software. | CO1: Understand fundamentals of data mining. CO2: Know feature and applications of data mining. CO3: Understand data warehousing, OLAP, OLTP, Data visualization. CO4: Implement and interpret the results of data scientifically using R software. | | STS 4 | DATA
ANALYSIS
USING SPSS
SOFTWARE | To learn statistical techniques and their implementation using comprehensive SPSS software. | CO1: Get familiar with SPSS software and understand SPSS environment. CO2: Create and edit the data files, plot graphs using SPSS. CO3: Compute descriptive statistics using SPSS. CO4: Perform inferential statistical analysis through SPSS. |